Rozpoznawanie obrazów w Metaverse: techniki i przykłady

📅 27 listopada 2022

Metaverse jest dziś szybko rozwijającą się nową technologią. Rozpoznawanie obrazów odgrywa zasadniczą rolę w budowaniu zdolności ludzi do doświadczania świata wirtualnego we wszechświecie Metaverse. Informacje wizualne odgrywają istotną rolę w przetwarzaniu, analizowaniu i rozumieniu materiałów wizualnych jako obrazów cyfrowych lub filmów wideo w celu podejmowania znaczących decyzji i kierowania działaniami.

Jednym z krytycznych aspektów, które sprawiają, że rozpoznawanie obrazów jest tak ważne w Metaverse, jest zdolność do obsługi dużych ilości danych. W wirtualnym świecie wiele informacji musi zostać przetworzonych i przeanalizowanych, aby wszystko działało płynnie. Rozpoznawanie obrazów pomaga nam to osiągnąć, wydajnie wydobywając istotne informacje z danych wizualnych i prezentując je w łatwy do zrozumienia sposób.

No alt text provided for this image

Rysunek 1: Rozpoznawanie obrazów w Metaverse.

Innym krytycznym czynnikiem jest dokładność algorytmów rozpoznawania obrazów . W wirtualnym świecie wszystkie informacje, które otrzymujemy, muszą być dokładne i wiarygodne. Możemy korzystać z najnowocześniejszych algorytmów rozpoznawania obrazów , aby zapewnić, że wizualizacje, które widzimy, są jak najbardziej zbliżone do rzeczywistości.

Ostatnią rzeczą, o której chcemy tutaj wspomnieć, jest fakt, że rozpoznawanie obrazów odgrywa istotną rolę w zapewnianiu ludziom możliwości interakcji z wirtualnymi obiektami.

Rozpoznawanie obrazów pozwala nam rozpoznawać:

  • twarze, dłonie i inne cechy ludzkie,
  • produkty i cechy produktów, takie jak kształt, kolory, detale
  • obiekty i ich położenie
  • relacje i zależności między obiektami

Wszystko to umożliwia technologia, oznacza to, że będziemy w stanie używać naszego głosu lub gestów do kontrolowania tego, co dzieje się w Metaverse, bez konieczności odrywania rąk od klawiatury lub myszy. 

Co więcej, wszystko, na co spojrzymy lub czego dotkniemy w Metaverse, zostanie automatycznie rozpoznane. Kiedy chwycisz za but, od razu poznasz jego markę. Jeśli trzymasz jogurt, będziesz mógł go natychmiast kupić, a jeśli prowadzisz wirtualny samochód, możesz zdecydować, która sugerowana opcja finansowa jest do zaakceptowania i natychmiast wsiąść.

Opis technik rozpoznawania obrazów

Klasyfikacja obrazu to proces przypisywania unikalnych etykiet do każdego piksela i grupy wektorów na obrazie w oparciu o ustalone kryteria. To jedna z najpopularniejszych technik, która wykazuje istotne wady. Załóżmy, że mamy zestaw obrazów należących do kategorii „buty” i przygotowaliśmy zestaw obrazów testowych, aby zmierzyć dokładność naszego rozpoznawania. Trudności polegają między innymi na zmianie widoku, deformacji i ustawieniach światła. Innymi słowy, jeśli chcesz poprawnie zidentyfikować but, każdy element powinien być dokładnie uchwycony i mieć podobne cechy sfotografowane w tej samej pozycji. Oto przykład:

No alt text provided for this image

Rysunek 2, klasyfikacji obrazów (Źródło: https://www.pyimagesearch.com)

Każdy algorytm odpowiada za przetwarzanie, którego celem jest pogrupowanie zdjęć w kategorie reprezentujące określony gatunek.

Wykrywanie obiektów to technika znajdowania i identyfikowania określonych obiektów na dowolnym zdjęciu lub filmie. Rozpoznawanie obiektów umożliwia nam wykrywanie lokalizacji lub ruchów tych obiektów w scenie, a następnie rysowanie ich za pomocą obwiedni. Istotna różnica między wykrywaniem obiektów a rozpoznawaniem obrazu polega na tym, że tworzy ono i nazywa obwiednię dla każdego elementu obrazu lub wideo oznaczonego jako konkretna rzecz.

No alt text provided for this image

Rysunek 3, wykrywania obiektów (źródło: Wikipedia)

Jak widać, mamy do czynienia z wieloma obiektami oznaczonymi przez algorytm. Specyficzna etykieta jest odpowiednio nazwana, dzięki czemu obiekt jest identyfikowany i może być wykorzystany do dalszego przetwarzania. Powszechną praktyką w Metaverse będzie łączenie obiektów z e-commerce i zapewnianie możliwości zakupu przedmiotu jednym gestem.

Śledzenie obiektu – termin ten odnosi się do śledzenia poruszającego się obiektu. Najpierw stosuje się wykrywanie obiektów, a następnie stosuje się algorytmy głębokiego uczenia lub uczenia maszynowego, gdzie ruch obiektu jest rozpoznawany i monitorowany. Śledzenie obiektów łączy rozpoznawanie obrazów i wideo, klasyfikację i wykrywanie obiektów. Dobrym przykładem może być drużyna piłkarzy:

No alt text provided for this image

Zdjęcie 4: Drużyna piłkarzy (Źródło: Dzone.com)

Algorytmy muszą rozpoznawać obiekty (ludzi) w określonej sytuacji (gra). Fani są poza zakresem, więc inżynierowie muszą odpowiednio przeszkolić algorytmy, aby odróżnić zespoły od fanów.

Rozpoznawanie obrazów w Metaverse

Rozpoznawanie obrazów było już wykorzystywane w aplikacjach rzeczywistości wirtualnej, takich jak Oculus Rift, Microsoft HoloLens, zestaw słuchawkowy Magic Leap One Augmented Reality itp., do celów rozpoznawania twarzy i śledzenia ruchu. Dzięki bardziej zaawansowanym technologiom uczenia maszynowego wykorzystywanym do analizy zachowań użytkowników, aplikacje wirtualnej rzeczywistości mogą zapewnić bardziej wciągające wrażenia, śledząc mimikę i ruchy użytkownika w czasie rzeczywistym.

Rozpoznawanie obrazów może być również wykorzystywane w Metaverse do przetwarzania treści generowanych przez użytkowników, takich jak zdjęcia i filmy. Aby to osiągnąć, informacje wizualne są wydobywane z tych obrazów lub filmów za pomocą komputerowych technik wizyjnych i analizowane przez algorytmy uczenia maszynowego w celu rozpoznawania obiektów, marek, funkcji i określonych szczegółów.

Wirtualne buty możemy przymierzać i modyfikować modele machnięciem palca w Metaverse bez wstawania i zdobywania nowej pary. Identyfikacja i śledzenie obiektów w czasie rzeczywistym umożliwia bezproblemowe przełączanie.

No alt text provided for this image

Zdjęcie 5: Wypróbuj w Metaverse kup i otrzymaj (źródło: https://www.theguardian.com)

Dzięki bardziej zaawansowanym technologiom uczenia maszynowego firmy mogą znacznie poprawić dokładność i precyzję tych analiz.

W Metaverse rozpoznawanie obrazów jest również wykorzystywane do celów współpracy. Jako przykład może podać wirtualny stół twórcom, inżynierom i architektom. Rozpoznawanie obrazów może pomóc w utrzymaniu ścisłej łączności procesu współpracy poprzez identyfikację i śledzenie elementów lub działań.

Dobrym przykładem są inżynierowie współpracujący nad następnym silnikiem, turbiną lub procesorem. Możliwe jest również wykorzystanie Metaverse dzięki kategoryzacji obiektów, klasyfikacji obrazów, oznaczaniu przedmiotów i wykrywaniu ruchu bez konieczności chodzenia gdziekolwiek lub spotykania się w tym samym pokoju. Pozwala na łatwiejsze łączenie się z innymi oraz poprawia kreatywność i współpracę.

No alt text provided for this image

Rysunek 6: Sposób kształcenia inżynierów w Metaverse (źródło: ultraleap.com)

Firmy, które już zagnieździły się w Metaverse:

  • Pierwszym przykładem świetnej firmy, która zapewnia doświadczenie w Metaverse, jest „Iris VR” (https://irisvr.com/). Tworzą oprogramowanie, które pomaga ludziom budować i udostępniać własne wirtualne przestrzenie. Przed rozpoczęciem kopania możesz użyć IrisVR z oprogramowaniem 3D, z którego korzysta już Twój zespół, aby uzyskać realistyczny podgląd projektu. Oprogramowanie umożliwia współpracownikom przeglądanie plików 3D z kolegami w VR, bez względu na ich lokalizację. Multiuser zapewnia niezawodny czat głosowy i wspólne środowisko wirtualne do prezentacji i recenzji projektów.
  • Drugim przykładem świetnej firmy, która zapewnia doświadczenie Metaverse, jest „AltspaceVR”. AltspaceVR (https://altvr.com) to społeczność do budowania i udostępniania wirtualnych przestrzeni innym. Jest dostępny na prawie każdym urządzeniu, w tym na goglach Oculus VR, HTC Vive, zwykłych wyświetlaczach, Samsung Gear VR (obsługiwany przez Oculus), Google Daydream View (obsługiwany przez aplikację Daydream), telefonach i tabletach z systemem iOS.
  • AltspaceVR oferuje różnorodne usługi planowania wydarzeń, takie jak nieograniczona pojemność, zarządzanie sceną, narzędzia do moderacji, panele gospodarzy, narzędzia do interakcji z publicznością, wsparcie międzyplatformowe, narzędzia do budowania świata, szablony środowiska, możliwości udostępniania ekranu oraz SDK do tworzenia udostępnianych Aplikacje. 
  • Poniższy przykład to VNTANA (https://www.vntana.com), która pomaga firmom wdrażać 3D i AR na dużą skalę za pomocą technologii holograficznej. VNTANA zapewnia kompletny zestaw narzędzi do tworzenia i dostarczania interaktywnych, realistycznych doświadczeń związanych z marką, które można wykorzystać w sklepach, na imprezach, w muzeach i nie tylko. Platforma VNTANA umożliwia firmom publikowanie aktualnych projektów 3D lub skanów 3D i natychmiastowe tworzenie atrakcyjnego handlu elektronicznego 3D i internetowej rzeczywistości rozszerzonej dla klientów.

Podsumowanie

Rozpoznawanie obrazów stało się podstawową technologią dla Metaverse. Umożliwia użytkownikom bardziej realistyczne doświadczanie wirtualnego świata poprzez przetwarzanie i analizowanie informacji wizualnych. Odgrywa również istotną rolę we współpracy i komunikacji między osobami pracującymi nad projektami.

Branża informatyczna przeżywa niesamowity wzrost. Metaverse będzie istotną częścią tego rozwoju. W przyszłości komputery i wizja komputerowa staną się jeszcze bardziej krytyczne, ponieważ będziemy nadal łączyć nasze życie ze światami wirtualnymi. 

Supercharge Your Business with Data Monetization and AI

Subscribe to the newsletter for weekly power-packed emails containing AI-powered productivity tips, AI products, and valuable insights on data analytics and monetization strategies, ensuring you stay ahead in the evolving world of Data and AI.

The form you have selected does not exist.